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Abstract

We consider approximation of diameter of a set S of
n points in dimension m. Eg̃eciog̃lu and Kalantari
[8] have shown that given any p ∈ S, by comput-
ing its farthest in S, say q, and in turn the farthest
point of q, say q′, we have diam(S) ≤

√
3 d(q, q′).

Furthermore, iteratively replacing p with an appro-
priately selected point on the line segment pq, in at
most t ≤ n additional iterations, the constant bound

factor is improved to c∗ =
√

5− 2
√

3 ≈ 1.24. Here we
prove when m = 2, t = 1. This suggests in practice a
few iterations may produce good solutions in any di-
mension. Here we also propose a randomized version
and present large scale computational results with
these algorithm for arbitrary m. The algorithms out-
perform many existing algorithms. On sets of data
as large as 1, 000, 000 points, the proposed algorithms
compute solutions to within an absolute error of 10−4.

1 Introduction

Given a finite set of points S in Rm, the diame-
ter of S, denoted by diam(S), is the maximum dis-
tance between two points in S. Let d(·, ·) denote
the Euclidean distance. For a given point p ∈ Rm,
let f(p) denote the farthest point of p in S. Let
rp = d(p, f(p)). We write f2(p) for f(f(p)). For
m = 2 the problem can be solved in O(n log n) time.
Computing the diameter of a point set is a funda-
mental problem and has a long history. Clarkson
and Shor gave a randomized O(n log n) algorithm [5].
Recent attempts to solve the 3-dimensional diame-
ter problem led to O(n log3 n) [7, 2] and O(n log2 n)
deterministic algorithms [7, 3]. Finally Ramos found
an optimal O(n log n) deterministic algorithm [6]. All
these algorithms use complex data structures and al-
gorithmic techniques such as 3-dimensional convex
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hulls, intersection of balls, furthest-point Voronoi dia-
grams, point location search structures or parametric
search. There are many other papers that focus on
this problem, see [9, 4, 11, 10]. The first nontrivial
approximation algorithm for this problem for arbi-
trary m was given in [8], approximating the diameter
to within a factor of

√
3. The operation cost of this

algorithm is O(mn). Additionally, [8] describes an
iterative algorithm that in t ≤ n iterations, each of
cost O(mn), produces an approximation of diam(S)
to within a factor of c∗ ≈ 1.24.

In Section 2, we describe the algorithm in [8] for
arbitrary m and state a new result for m = 2 in ap-
proximation of the diameter to within a factor of c∗.
In Section 3, we describe iterative algorithms for ar-
bitrary dimension m. In Section 4, we present exper-
imental results of the proposed algorithms in various
dimensions and make comparison with several exist-
ing algorithms. We conclude in Section 5.

2 Fast Approximation

Consider the following algorithm. Pick arbitrary
p ∈ S. Compute f(p). Clearly, rp ≤ diam(S) ≤ 2rp.
Next compute f2(p). In [8] it is shown rf(p) ≤
diam(S) ≤

√
3rf(p). To improve this bound, in

[8] the following iterative procedure is described:
Let p′ = αp + (1 − α)f(p), α = rf(p)/rp. Let
q be the midpoint of p′ and f(p). Compute f(q)
and f2(q). If d(f(q), f2(q)) ≤ d(f(p), f2(p)), then
diam(S) ≤ c∗d(f(p), f2(p)). Otherwise, replaces S
with S \ {p, f(p)}, and repeat the process, replac-
ing p with q, f(p) with f(q). Eventually, in t ≤ n
iterations, each of cost O(mn), we obtain an approx-
imation of diam(S) to within a factor of c∗. However,
in [8] no constant bound on t is given. We prove.

Theorem 1. ([1]) When m = 2, diam(S) ≤
c∗max{d(f(p), f2(p)), d(f(q), f2(q))}.



3 Iterative Algorithms

We propose two iterative algorithms for approximat-
ing the diameter in any dimension. The first is essen-
tially [8] and the second a randomized version. They
each have an input t as the number of iterations.
However, we used small t since they produce high
accuracy solution. In the randomized algorithm we
begin with arbitrary p ∈ S and compute f(p). Next
let q to be the midpoint of p and f(p) and compute
f(q) and f2(q). We iterate this algorithm. In the
next step, we can either begin from f(p) or f2(q). To
do so, we randomly choose one with equal probabil-
ity. This becomes our new point. Then we compute
the farthest point from the chosen point and com-
pare the estimate of diameter of previous step with
the new one. In practice we used t = 2, 3 and 5.

4 Experimental Results

The most comparable approaches to ours are the al-
gorithms proposed in [11] and [10]. We have used
the package implemented by Malandain and Bois-
sonnat’s in [11]. They have implemented their algo-
rithms and we have also implemented our algorithms
and added them to their package. In their experi-
ments they generated 2 types of data set: Volume
based distributions, in a cube, in a ball, and in sets
of constant width (only in 2D); and Surface based dis-
tributions, on a sphere, and on ellipsoids. They also
used real inputs. We have also used the same pack-
age to generate data sets and the same real inputs.
Malandain and Boissonnat’s have implemented the
following algorithms (i) Malandain and Boissonnat’s
exact algorithm; (ii) Malandain and Boissonnat’s ap-
proximation algorithm; (iii) Har-Peled’s algorithm:
implemented by Malandain and Boissonnat; (iv) Hy-
brid1 algorithm: proposed by Malandain and Bois-
sonnat which is combination of their algorithm and
Har-Peled’s algorithm; (v) Hybrid2 algorithm: an-
other modification of the two algorithms presented
by Malandain and Boissonnat’s algorithm and Har-
Peled’s algorithm. We have generated the data sets
and computed the diameter for each set using each of
the above algorithms and our proposed algorithms.
The experimental results are shown in detail in [1].
The first 5 algorithms are implemented by Malandain
and Boissonnat’s and the next one is the implemen-
tation of the first algorithm with t = 2, and the ran-
domized algorithm with t = 2, 3 and 5. In all the
data sets, the difference between the approximated

value and exact value of diameter is less than 10−4

where diam(S) > 1 even with t = 2 iterations for
both algorithms. The running time of the random-
ized algorithm, with t = 2 iteration is better than all
others. The proposed algorithms are more efficient
in higher dimensions and require no extra memory.
Also, by virtue of their efficiency they can be imple-
mented for big data sets. Another advantage of these
algorithms is that in higher dimensions, their running
time is significantly better than the other algorithms.

5 Conclusion

We studied the diameter problem, a significant prob-
lem in computational geometry. We presented a fast
1.24-approximation algorithm in dimension 2. We be-
lieve the same bound applies to any dimension. Its
verification is the subject of future work. We pro-
posed two iterative algorithms, one is randomized.
We also implemented these algorithms and compared
the running times with related works. Based on ex-
perimental results the algorithms are very efficient.
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