
An Almost Optimal Algorithm for Dynamically Updating the
Reeb Graph

Salman Parsa ∗

This work is about an efficient algorithm for dynamic updates of the Reeb graph. Given a simplicial
complex K and a simplex-wise linear map f : |K| → R the Reeb graph R(f,K) is defined as follows.
Define two points x, y ∈ |K| equivalent, x ∼ y, if f(x) = f(y) and x and y are connected in f−1(f(x)).
Then the Reeb graph is the space |K|/ ∼. Intuitively, it is the space whose points are connected com-
ponents of the various level-sets of f . The Reeb graph is the 1-dimensional structure which sometimes
can be used in place of the complex in applications, see [1] for a survey. Let m denote the size of the
complex, which is the total number of its simplices. In [4] an algorithm is given for computing the Reeb
graph in O(m logm) time. This algorithm uses dynamic trees data structures and builds on previous
work in [2, 5]. They also can be computed in the same time-bound by a randomized algorithm [3].

The Reeb graph depends on the function defined on K. In this work we are interested in the changes
in the Reeb graph when the function changes dynamically. The map f is defined by assigning real values
to the vertices of K. We assume these real values are distinct. It then follows easily that the Reeb graph
depends only on the ordering of vertices by their function values. Therefore, we only need to update the
Reeb graph when this ordering is changed. The basic event is when two neighboring vertices exchange
their place in this ordering. This is called an interchange event. Our task is to update the Reeb graph
when such an interchange happens. The difficulty here is to decide global connectivity of the level-sets
that change dynamically. Figure 1 below shows when a loop appears or disappears in the Reeb graph by
a single interchange event. Part a of the figure depicts a complex which is the boundary of a cube but
with two triangles removed, namely v3v4v9 and v5v6v10. The front face is not shown. The function on
the complex assigns the usual perceived height to the vertices. The Reeb graph is depicted in part b. The
loop will disappear when v9 and v10 exchange their place in the ordering.

Now let us take l copies of the complex in the figure and identify the vertices which correspond
to v9, and similarly identify those corresponding to v10. Then the same change happens in each copy.
The Reeb graphs are drawn in parts c and d of the figure. This example shows that in general a single
update can change the Reeb graph by Ω(m) combinatorial changes, where m is size of the complex.
Therefore, in the worst-case there cannot be an efficient algorithm in terms of m essentially better than
reconstructing the Reeb graph. However, note that a single interchange can change the Reeb graph by
O(l) combinatorial changes, where l is an upper bound on size of the star of the vertices. Therefore, we
have to write the running time of an update as a function of l.

We announce an algorithm which updates the Reeb graph in O(l log2m) worst-case time. We are not
aware of any other algorithm for this problem other than using off-the-shelf graph connectivity for level-
set graphs. In these algorithms the running time is O(lu(n)) where u(n) is the worst-case deterministic
run-time of the dynamic graph connectivity structure, hence, u(n) = Θ(

√
n1).

∗Duke University, Durham, NC, USA and IST Austria, Klosterneuburg, Austria. email : salparsa@cs.duke.edu

1

Figure 1: Dependency on the size of the stars

Here we give an overview of the approach. It is easy to see that the Reeb graph only depends on the
2-skeleton of the complex, hence we can assume K is 2-dimensional. A level-set of f will be a graph
which we call a level-set graph. There exist n0 level-set graphs which do not include a vertex, where by
ni we denote the number of i-simplices in K. Thus, the size of K is m = n0 + n1 + n2. The level-sets
are over the same node set, which is the set of edges of K. Arcs of each level-set graph correspond to
triangles in K.

Each interchange changes one of these level-set graphs by inserting and deleting some arcs. There
will be O(l) of these operations. If we can maintain these level-sets in a data structure such that insert,
delete and connectivity queries can be performed on it efficiently, we can then update the Reeb graph
efficiently. Here one can use off-the-shelf dynamic graph connectivity structures. However, there are
two problems with them. First, the best worst-case time for dynamic connectivity is O(

√
n) for a graph

with n vertices. Second, we do not have enough operations on the same data structure to use the data
structures with amortized time bounds. In our approach, we maintain a spanning forest of each level-set
graph. It turns out that using the forests before and after the current level-set graph, one can always
maintain the connectivity in O(log2 n) worst-case time per operation on a level-set graph. There is a
preprocessing cost which amounts to constructing a dynamic tree data structure for spanning forest of
each level set. These data structures also are the required space for the algorithm, which is O(n0n1) in
the worst-case.

References

[1] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis and appli-
cations. Theo. Comp. Sci., 392(1-3):5 – 22, 2008.

[2] Harish Doraiswamy and Vijay Natarajan. Efficient algorithms for computing Reeb graphs. Comput.
Geom., 42(6-7):606 – 616, 2009.

[3] William Harvey, Yusu Wang, and Rephael Wenger. A randomized O(m logm) time algorithm for
computing Reeb graphs of arbitrary simplicial complexes. In Proc. 2010 Ann. Sympos. Comput.
Geom, pages 267–276.

[4] Salman Parsa. A deterministic O(m logm) time algorithm for the Reeb graph. Discrete and Com-
putational Geometry, 49(4):864–878, 2013.

[5] Yoshihisa Shinagawa and Tosiyasu L. Kunii. Constructing a Reeb graph automatically from cross
sections. IEEE Comput. Graphics Appl., 11:44–51, 1991.

2

