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1 Introduction

As autonomous and semi-autonomous vehicles become
more prevalent, there is an emerging interest in algo-
rithms for controlling and coordinating their motions to
improve traffic flow. The steady development of motor
vehicle technology will enable cars of the near future to
assume an ever increasing role in the decision making and
control of the vehicle itself. In the foreseeable future, cars
will have the ability to communicate with one another in
order to better coordinate their motion. This motivates
a number of interesting algorithmic problems. One of the
most challenging aspects of traffic coordination involves
traffic intersections.

We focus here on a problem, called the Traffic Cross-
ing Problem, that involves coordinating the motions of
a set of vehicles moving through an intersection. In ur-
ban settings, road intersections are regulated by traffic
lights or stop/yield signs. Much like an asynchronous
semaphore, a traffic light locks the entire intersection pre-
venting cross traffic from entering it, even when there is
adequate space to do so. Some studies have proposed
a less exclusive approach in which vehicles communicate
with a local controller that allows vehicles, possibly mov-
ing in different directions, to pass through the intersec-
tion simultaneously if it can be ascertained (perhaps with
a small adjustment in velocities) that the motion is col-
lision free (see, e.g., [2]). Even though such systems may
be beyond the present-day automotive technology, the ap-
proach can be applied to controlling the motion of parcels
and vehicles in automated warehouses [5].

Prior work on autonomous vehicle control has gener-
ally taken a higher-level view (e.g., traffic routing [6]) or a
lower-level view (e.g., control theory, kinematics, etc. [4]).
We propose a mid-level view, focusing on the control of
a vehicle over an interval spanning perhaps seconds to
minutes. The work by Fiorini and Shiller on velocity
obstacles [3] considers motion coordination in a decen-
tralized context, in which a single moving agent is at-
tempting to avoid other moving objects. Much closer to
our approach is work on autonomous intersection man-
agement (AIM) [2]. The approach taken there focuses
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largely on the application of multi-agent techniques, and
formal complexity bounds are not proved. Berger and
Klein consider a dynamic motion-panning problem in a
similar vein to ours, which is loosely based on the video
game Frogger [1]. A traveler must cross a horizontal strip
(the river) but may jump onto rectangular moving carri-
ers (floating logs) to reach a goal position on the opposite
side of the strip.

We consider a very simple problem formulation of the
Traffic Crossing Problem, but one that we feel captures
the essential computational challenges of coordinating
crosswise motion through an intersection. We model the
traffic network as a collection of axis-parallel lines, which
represent roads. Vehicles are modeled as line segments
moving monotonically along axis-parallel straight lines
(traffic lanes) in the plane. Vehicles can alter their speed,
subject to a maximum speed limit, but they cannot re-
verse direction, make turns, or change lanes. The objec-
tive is to plan the collision-free motion of these vehicles as
each moves from a given start position to a desired goal
position.

2 Problem Definition

A traffic crossing is defined as a set C = (V, δmax), which
is comprised of a set V = {v1, . . . , vn} of n vehicles in
the plane and a global speed limit δmax ∈ R+. Each
vehicle is modeled as a vertical or horizontal open line
segment that moves parallel to its orientation. Like a
car on a road, each vehicle moves monotonically, but its
speed may vary between zero and the speed limit. A
vehicle’s position is specified by its leading point (relative
to its direction). Each vehicle vi is associated with a start
and goal position, denoted p`i and pai , respectively. It is
also associated with a start time and deadline, denoted t`i
and tai , respectively. The question is whether, subject to
the speed limit, there exists a collision-free motion plan
so that each vehicle travels monotonically from its start
position and reaches its goal position prior to its deadline.

The motion of each vehicle is described by a function,
called a speed profile, that defines the instantaneous speed
of the vehicles at time t. Formally, the speed profile for
the ith vehicle vi is given as a function δi(t) of time.
Given its speed profile, the position of a vehicle at time t,

denoted pi(t), is p`i +di

[∫ t

0
δi(x)dx

]
. The vehicle inhabits
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the open line segment of unit length whose leading point
is at pi(t), which we denote by σi(t). Given a traffic
crossing C, a set D of speed profiles is valid for C if:

∀t /∈
[
t`i , t

a
i

]
, δi(t) = 0 (1a)

∀t ∈
[
t`i , t

a
i

]
, δi(t) ∈ [0, δmax] (1b)

∀t and for 1 ≤ i < j ≤ n, σi(t) ∩ σj(t) = ∅ (1c)

pi(t
a
i ) = pai (1d)

These conditions state (respectively) that (1a) a vehicle
may not move either prior to its start time nor after its
deadline, (1b) does not reverse direction or exceed the
speed limit, (1c) does not collide with other vehicles, and
(1d) arrives at its goal position. The Traffic Crossing
(decision) Problem is, given a traffic crossing C, does
there exist a valid set of speed profiles for C.

3 Hardness of Traffic Crossing

Our first result states that the Traffic Crossing Problem
is NP-Hard.

Theorem 3.1. Given a Boolean formula F in 3-SAT,
there exists a traffic crossing C = (V, δ), computable in
polynomial time, such that F is satisfiable if and only if
there exists a valid set of speed profiles D for C.

Due to space limitations, we present a brief outline of
the reduction. (See the full version of the paper for de-
tails.) A special set of variable vehicles are used to repre-
sent variables of the boolean formula. Through a careful
assignment of the start and goal positions and start and
deadline times together with the use of auxiliary helper
vehicles, we constrain the legal motions of each vehicle to
one of two types, either going at full speed to the goal,
or delaying for a fixed time period and then going at full
speed to the goal. These two choices are used to specify
the truth value for each variable. Next, we define a clause
mechanism to enforce clause satisfaction. Each makes use
of a special verifier vehicle. The mechanism is designed
so that the verifier vehicle must delay for five time units
if all of the literals are false, but may delay for less if at
least one is true. By an appropriate setting of the start
and deadline times for each verifier vehicle, we enforce
the condition that each clause must be satisfied. Finally,
in order to guarantee that vehicles arrive at the appropri-
ate times to the various mechanisms, we define a delaying
mechanism.

4 One-Sided Traffic Crossing

In this section we show that it is possible to solve a con-
strained version of the Traffic Crossing Problem much
more efficiently. The complexity of the generalized Traffic
Crossing Problem comes from the interplay between the
horizontal (east-west) and vertical (north-south) vehicles,

which can result in a complex cascade of constraints. To
break this interdependency, we consider a variant, called
the One-Sided Traffic Crossing Problem, in which one di-
rection of vehicles have their speeds fixed, and the other
direction adjusts theirs to avoid collisions.

A one-sided traffic crossing instance for this variant is
the same as described earlier, but the vertically-moving
vehicles all move at the same, fixed speed from north
to south. The horizontally-moving vehicles move from
west to east, but their speeds are determined by the al-
gorithm and may vary up to the maximum speed limit.
The objective is to compute a valid speed profile for the
horizontally-moving vehicles. We assume that the lines
carrying the vehicles are disjoint, that is, there are no
two vehicles in the same lane. Given such a instance,
the problem is to determine whether such a speed profile
exists.

Theorem 4.1. The One-Sided Traffic Crossing Problem
can be solved in O(n log n) time.

The algorithm involves two applications of plane sweep.
We begin by transforming the problem so that the each
horizontally-moving vehicle is shrunken to a point, and
each vertically-moving vehicle is represented as a rectan-
gle. The first application of plane sweep constructs a set
of collision zones. These are regions of the plane that
have the property that any horizontally-moving vehicle
whose leading point enters such a region cannot avoid in-
tersecting at least one vertically-moving vehicle. The sec-
ond plane sweep plans an optimal collision-free motion for
each of the horizontally-moving vehicles by computing a
time-minimum routing around these collision zones. We
show that both sweeps run in O(n log n) time.
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Abstract

The steady development of motor vehicle technology will enable cars of the near future to
assume an ever increasing role in the decision making and control of the vehicle itself. In the
foreseeable future, cars will have the ability to communicate with one another in order to better
coordinate their motion. This motivates a number of interesting algorithmic problems. One of
the most challenging aspects of traffic coordination involves traffic intersections. In this paper
we consider two formulations of a simple and fundamental geometric optimization problem
involving coordinating the motion of vehicles through an intersection.

We are given a set of n vehicles in the plane, each modeled as a unit length line segment that
moves monotonically, either horizontally or vertically, subject to a maximum speed limit. Each
vehicle is described by a start and goal position and a start time and deadline. The question is
whether, subject to the speed limit, there exists a collision-free motion plan so that each vehicle
travels monotonically from its start position and reaches its goal position prior to its deadline.

We present two results. First, we show that this problem is NP-Hard, by a reduction from
3-SAT. Second, we consider a constrained version in which cars traveling horizontally can alter
their speeds while cars traveling vertically cannot. We present a simple algorithm that solves
this problem in O(n log n) time.

1 Introduction

As autonomous and semi-autonomous vehicles become more prevalent, there is an emerging interest
in algorithms for controlling and coordinating their motions to improve traffic flow. The steady
development of motor vehicle technology will enable cars of the near future to assume an ever
increasing role in the decision making and control of the vehicle itself. In the foreseeable future, cars
will have the ability to communicate with one another in order to better coordinate their motion.
This motivates a number of interesting algorithmic problems. One of the most challenging aspects
of traffic coordination involves traffic intersections. In this paper we consider two formulations of
a simple and fundamental geometric optimization problem involving coordinating the motion of
vehicles through an intersection.
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Traffic congestion is a complex and pervasive problem with significant economic ramifications.
Our intent is to identify simple and clean formulations of algorithmic problems that may serve
as the low-level tools for more inclusive solutions. We focus here on a problem, called the traffic
crossing problem, that involves coordinating the motions of a set of vehicles moving through an
intersection. In urban settings, road intersections are regulated by traffic lights or stop/yield signs.
Much like an asynchronous semaphore, a traffic light locks the entire intersection preventing cross
traffic from entering it, even when there is adequate space to do so. Some studies have proposed a
less exclusive approach in which vehicles communicate with a local controller that allows vehicles,
possibly moving in different directions, to pass through the intersection simultaneously if it can
be ascertained (perhaps with a small adjustment in velocities) that the motion is collision free
(see, e.g., [8]). Even though such systems may be beyond the present-day automotive technology,
the approach can be applied to the controlling the motion of parcels and vehicles in automated
warehouses [16].

Prior work on autonomous vehicle control has generally taken a higher-level view (e.g., traffic
routing [4,5,14,17]) or a lower-level view (e.g., control theory, kinematics, etc. [10,13]). We propose
a mid-level view, focusing on the control of vehicles over the course of minutes rather than hours
or microseconds, respectively. The work by Fiorini and Shiller on velocity obstacles [11] considers
motion coordination in a decentralized context, in which a single moving agent is attempting avoid
other moving objects. Much closer to our approach is work on autonomous intersection management
(AIM) [1,3,6–9,15]. This work, however, largely focuses on the application of multi-agent techniques
and deals with many real-world issues. As a consequence, formal complexity bounds are not proved.
Berger and Klein consider a dynamic motion-panning problem in a similar vein to ours, which is
loosely based on the video game Frogger [2]. A traveller must cross a horizontal strip (the river) but
may jump onto rectangular moving carriers (floating logs) to reach a goal position on the opposite
side of the strip.

We consider a very simple problem formulation of the traffic crossing problem, but one that we
feel captures the essential computational challenges of coordinating crosswise motion through an
intersection. We model vehicles as line segments moving monotonically along axis-parallel straight
lines (traffic lanes) in the plane. Vehicles can alter their speed, subject to a maximum speed
limit, but they cannot reverse direction. The objective is to plan the collision-free motion of these
segments as they move to their goal positions.

After a formal definition of our traffic crossing problem in Section 2, we present two results.
First, we show in Section 3 that this problem is NP-hard, by a reduction from 3-SAT. Second,
in Section 4 we consider a constrained version in which cars traveling horizontally can alter their
speeds while cars traveling vertically cannot. This variant is motivated by a scenario in which
traffic moving in one direction (e.g., a major highway) has priority over crossing traffic (e.g., a
small road). We present a simple algorithm that solves this problem in O(n logn) time.

2 Problem Definition

The Traffic Crossing Problem is one in which several vehicles must cross an intersection simultane-
ously. For a successful crossing, all vehicles must reach the opposite side of the intersection without
any collisions between them and they must do so in a reasonable amount of time. This time-based
restriction exists to encourage an improvement in efficiency over the traffic light regulated crossing.
Here, a “reasonable amount of time” is short enough that the traffic cannot simply take turns
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crossing the intersection (i.e., using the manner in which a traffic light regulates intersections) but
instead forces some amount of simultaneity.

The Traffic Crossing Problem can be posed either as one of optimization (e.g., how quickly
can all the cars get across without colliding) or as a decision problem (e.g., can all vehicles cross,
collision-free, within a particular time limit). Here, it is treated as a decision problem so that its
parallels to problems like that of Satisfiability can be more easily illustrated.

2.1 Formal Definition

A traffic crossing is defined as a set C = (V, δmax). This set is comprised of a set of n vehicles
V ∈ R

2 and a global speed limit δmax ∈ R
+. Each vehicle is modeled as a vertical or horizontal

open line segment that moves parallel to its orientation. Like a car on a road, each vehicle moves
monotonically, but its speed may vary between zero and the speed limit. A vehicle’s position is
specified by its leading point (relative to its direction).

Each vehicle vi ∈ V is defined as a set of properties, vi = {li, p
⊢
i , p

⊣
i , t

⊢
i , t

⊣
i }

1, defined as follows:

li: The length of the vehicle’s line segment.

p⊢i : The starting position of the vehicle, i.e., the vehicle’s position prior to its start time (see below).
The position is defined as a point and represents the leading edge of the vehicle.

p⊣i : The goal position of the vehicle. The vehicle is considered to have successfully crossed the
intersection if its leading point reaches this position either on or before its deadline (see
below).

t⊢i : The starting time of the vehicle. The vehicle may not move prior to this time.

t⊣i : The deadline for the vehicle. This is an absolute point in time by which the vehicle must reach
its goal position.

The set V and the global speed limit δmax define the problem and remain invariant throughout.
Our objective is to determine whether there exists a collision-free motion of the vehicles that
respects the speed limit and satisfies the goal deadlines. Such a motion is described by a set of
functions, called speed profiles, that define the instantaneous speed of the vehicles at time t.

(a)

δi
ti
⊢

ti
⊣

(b)

li

pi
⊣

pi
⊢

Figure 1: (a) The physical specification of a vehicle vi. (b) A possible speed profile, δi, for a vehicle
vi.

Formally, this set of functions is defined as D = {δi(t) | i ∈ [1, n], ∀t, 0 ≤ δi(t) ≤ δmax}. Given

its speed profile, the position of a vehicle at time t is pi(t) = p⊢i + di

[

∫ t

0 δi(x)dx
]

and the vehicle vi

inhabits the open line segment between pi(t) and pi(t)− dili, which we denote by σi(t).

1The notational use of ⊢ and ⊣ set above a variable (e.g., α⊢) represent the beginning and end of a closed interval,
respectively (e.g., start and end times).
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A set D of speed profiles is valid if:

∀t /∈
[

t⊢i , t
⊣
i

]

δi(t) = 0 (1a)

∀t ∈
[

t⊢i , t
⊣
i

]

δi(t) ∈ [0, δmax] (1b)

∀t and ∀vj , vi ∈ V : vj 6= vi, σi(t) ∩ σj(t) = ∅ (1c)

pi(t
⊣
i ) = p⊣i (1d)

Equation (1a) states that the vehicle may not move either prior to its start time nor after its
deadline has passed. Equation (1b) enforces the speed limit and prevents vehicles from traveling
in reverse. Equation (1c) prohibits collisions. Equation (1d) enforces the goal condition.

A traffic crossing C is solvable if there exists a valid set of speed profiles D.

3 Hardness of Traffic Crossing

In this section, we will show that determining whether a traffic crossing is solvable is NP-Hard. In
particular, we prove the following theorem:

Theorem 3.1. Given a Boolean formula F in 3-SAT, there exists a traffic crossing C = (V, δ),
computable in polynomial time, such that F is satisfiable iff there exists a valid set of speed profiles
D for C.

The input to the reduction is a boolean formula F in 3-CNF. Let {z1, . . . , zn} denote its variables
and {c1, . . . , cm} denote its clauses. What follows is a high level overview of the reduction, with a
more detailed description given further below.

Each variable zi in F is represented by a pair of vehicles whose motion are constrained to
one of two possible states. Then, for each clause ci ∈ F , we create a mechanism that forces a
collision if and only if all three literals of ci are False. Finally, extra vehicles are added to carry the
truth values of each variable to the appropriate clause mechanisms. For these clause mechanisms
to function properly, the requisite vehicles must arrive at prescribed times. For this, one final
mechanism is introduced that adjusts the relative timing of the vehicles. In the end, we will show
that the original formula F is satisfiable if and only if the established traffic crossing is solvable,
thus illustrating that the Traffic Crossing Problem is NP -Hard.

All vehicles in the reduction (except where noted) are of unit length and their deadlines are
set so that they can reach their goal position with at most one unit time delay. More formally,

t⊣i − t⊢i + 1 =
(||p⊣

i
−p⊢

i
||)

δmax
. In general, the delay may take multiple forms (e.g., the vehicle could take

a delay of 1 at any point during its travel or spread the delay out by traveling slower than δmax),
but a mechanism will be introduced to constrain the delay to only one of two types.

3.1 Variable Representation

Each variable zi is represented by a pair of vehicles that encode the truth values for both the
variable and its negation. The vehicles in this pair, referred to as value vehicles, travel downward
in a coordinated manner along two vertical lines that are separated by the unit distance. As
mentioned above, a vehicle can endure a delay in the interval [0, 1]. Through the use of additional
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vehicles, when and how this delay occurs will be constrained. The vehicles “carry” a truth value
based on their movement through the system, and doing so requires limiting the vehicles’ movements
to one of two states. In particular, each value vehicle can either delay for 1 time unit and then
proceed at full speed to the goal or proceed at full speed directly to its final destination, arriving 1
time unit before its deadline. These two movement types will be referred to as delay-first (True)
and delay-last (False) policies, respectively.

In order to constrain the delay policies of the value vehicles, two pairs of helper vehicles are
added. The first pair forces one (and only one) of the value vehicles to incur an immediate unit
delay. The second helper pair forces the remaining value vehicle to delay only at the end of its
path.

The helper vehicles in a pair travel together horizontally, are separated vertically by the unit
distance, and are placed so that they intersect the value vehicles’ paths. Their goal positions, start
times, and end times are all set so that an interaction occurs between them and the value vehicles.

Thus, let (x, y) and (x+ 1, y) denote the positions of the leading points of a value vehicle pair
(v1, v

′
1) at time t (see Fig. 2 and Remark A explaining it). Place a helper vehicle pair (u′1, u1) at

(x, y) and (x, y+1), respectively, set their goal positions to (x+2, y) and (x+2, y+1), their start
times to t, and their deadlines to t + 3. Similarly, place another helper vehicle pair (w′

1, w1) at
(x, y+∆) and (x, y+1+∆), respectively, set their goal positions to (x+2, y+∆) and (x+2, y+1+∆),
their start times to t+∆, and their deadlines to t+3+∆. The value of ∆ is, essentially, arbitrary
and is used here to illustrate that the distance traveled by the value vehicles does not affect their
selection of and adherence to one of the two prescribed movement policies.

Lemma 3.1. Given the pairs (v1, v
′
1), (u

′
1, u1), and (w′

1, w1) as defined above, the value vehicles v1
and v′1 must each adopt one of the following two movement policies: (a) delay for exactly 1 unit
of time and then move beyond the paths of (u′1, u1) at speed δmax (i.e., delay-first); or (b) move
beyond the paths of (w′

1, w1) at δmax without delay (i.e., delay-last). Additionally, v1 and v′1 may
not select the same policy.

Proof : First, notice that because v1 and u′1 are in the same position at time t and are traveling
toward each other, they will collide if neither one delays. Instead, they must choose different
movement profiles so that one delays first, allowing the other to pass. This delay must be exactly 1
time unit long. Any longer and the delaying vehicle would miss its deadline; any shorter and there
would not be sufficient time for the other vehicle to pass (traveling at δmax, a vehicle of length 1
requires this much time).

Second, notice that a delay of v′1 necessitates a similar delay of u′1. This is because it takes 1
time unit for u′1 to reach the point at which their paths intersect. If v′1 was to delay 1 time unit
yet u′1 was to leave immediately, they would reach this point simultaneously and collide.

Given that u′1 must delay if v′1 does and v1 cannot enact the same movement policy that u′1
does, it must be the case that both value vehicles cannot choose to delay for 1 time unit at this
point. A similar dependency exists between the value vehicles and u1, though this dependency
prevents v1 and v′1 from both leaving immediately.

The logic above also holds for the second helper pair, (w′
1, w1), constraining the value vehicles

to opposing movement policies until they have moved beyond the paths of the helper vehicles.
This also prevents the value vehicles from swapping movement policies. To do so would require
the lagging vehicle (i.e., the vehicle that adopted the delay-first policy) to speed up while the
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(a) (b)

vi v′ivi v′i

u′i

ui

u′i

ui

(c) (d)

vi v′ivi v′i

u′i

ui

u′i

ui

zi = Truezi = False

Invalid Invalid

(x, y)

Figure 2: (a/b) Value vehicles taking on opposing values, allowing for valid paths for the helper
vehicles. (c/d) If both value vehicles select the same delay policy, then there is no valid speed
profile for one of the helper vehicles. (See Remark A on figure layouts.)
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lead vehicle slows down. However, given the constraints placed on the vehicles, they are already
traveling at the speed limit δmax, so the lagging vehicle may not go any faster. ⊓⊔

To represent all of the variables in {z1, . . . , zn} we create multiple instances of the mechanism
described above, one for each variable. These instances are lined up, one in front of the other, to
form a common variable stream (see Fig. 3). The value vehicles’ positions are initialized so that
each member in a pair is colinear with the respective members of all other pairs of value vehicles.
Additionally, the starting positions are spaced s ≥ 7 units apart. This padding is to allow for the
later insertion of a mechanism that regulates the timing of truth values flowing through the system.

Variable Stream

Helper
Vehicles

Figure 3: An example of value vehicles arranged into a variable stream representing four variables.

The variable stream is conceptually divided into blocks of length s|V |, long enough to accom-
modate all of the value vehicles and their requisite spacing. Every clause in F is associated with
two of these blocks (one for the positive literals and one for the negative literals), requiring 2|C|
such blocks (see Fig. 4). Two extra blocks are added, one at either end of the variable stream, to
accommodate the initialization of the value vehicles with the helper vehicles. Truth values for the
appropriate literals will be copied and transferred out of each block to a mechanism which adjusts
their relative timing. This adjustment prepares the vehicles for a final mechanism that validates
the satisfaction of the associated clause.

So, given a formula F with |C| clauses and |V | variables, each variable zi is represented by a
vehicle vi with the following parameters:

p⊢i = (0, si) (2a)

p⊣i = (0, 2s|V |(|C|+ 1) + si) (2b)

t⊢i = 0 (2c)

t⊣i = 2s|V |(|C|+ 1) + 1 (2d)

In addition, the vehicle v′i is created with similar parameters, but shifted 1 unit to the right.
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C1

C2

Timing
Adjustment

Timing
Adjustment

Literals

Variable
Values

s|V |

2s|V |

2s|V |

s|V |

x+

y+

Figure 4: An overview of a reduction from 3-SAT to an instance of the Traffic Crossing Problem.

3.2 Value Transmission and Timing

For each clause, the three literal values will need to be carried to the appropriate clause mechanisms
so that they arrive in the right place at the right time. This requires the introduction of two new
mechanisms: one that copies truth values, and one that can adjust the timing of when a value
reaches a particular location.

3.2.1 Value Duplication

In order to perform clause verification we will need the ability to transmit the variable values freely
around our space. To do so, a new pair of parallel vehicles is created, separated by a distance of
1, whose purpose is to copy these values from the variable stream and carry them elsewhere. This
pair is placed so that its starting position lies on the leftmost side of the variable stream, traveling
to the right, and its start time t⊢i is the time at which the leading edge of the appropriate value pair
reaches the vertical position of the uppermost vehicle (see Fig. 5). Just like the helper vehicles,
each of these copy vehicles has their deadlines set so that they may delay for 1 time unit at most
and because of this, the vehicles become a negative copy of the original value vehicles, with the
negation on top and the original variable value on the bottom. We can continue to copy these
values in order to carry them through the traffic space, taking orthogonal turns each time we do
so. Any copies along this path that travel vertically will carry the variable’s value on the left and
the negation on the right. Any horizontal copy carries the negation on top and the original value
below.

Each of a clause’s positive literal values will be copied off of the variable stream simultaneously.
The negative literals are copied similarly. By chaining vehicle copies across the space we can route
the literal values to any location as necessary.
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(a) (b) (c)

v1

v′
1

Figure 5: (a) An example of transferring a truth value at start time t⊢i for the copying vehicles. In
this example, the variable z1 is True, making v1 and v′1 True and False, respectively. (b) At time
t⊢i + 1, notice that in the orthogonal copy the upper vehicle will take on the value of the negation
while the lower vehicle takes the original value. (c) Another example of a value transfer at time
t⊢i + 1, but with z1 = False.

3.2.2 Timing and Delays

The routing of values may require that they travel different distances to reach certain points. By
the structure of our reduction, except when stopped, all vehicles travel at the same speed. Because
of this, any difference in path length will cause a difference in timing that may need to be corrected.
This is done through the introduction of a delay mechanism. This mechanism is inserted into the
path of every copy coming off of the variable stream and can be configured to delay a vehicle pair’s
leading edge by an arbitrary amount. This delay does not affect the values carried by the vehicles.
Essentially, the value is routed through an S shape in the mechanism, doubling back on itself (see
Fig. 6). The size of this S determines the extra distance that must be traveled and thus the total
amount of delay. A parameter d represents the extra distance added to the S in order to tune
the mechanism, leading to a delay of 2d (as described below). Vehicle pairs are arranged in the
mechanism as follows, with the first and last referred to as the incoming pair and outgoing pair,
respectively:

• (x, y) and (x, y + 1) at time t,

• (x+ 2 + d, y) and (x+ 3 + d, y), with a start time of t+ 2 + d,

• (x+ 3 + d, y + 2) and (x+ 3 + d, y + 3), with a start time of t+ 4 + d,

• (x, y + 2) and (x+ 1, y + 2), with a start time of t+ 6 + 2d,

• (x, y + 4) and (x, y + 5), with a start time of t+ 8 + 2d,

• (x+ 5 + d, y + 5) and (x+ 6 + d, y + 5), with a start time of t+ 13 + 3d,

• and (x+ 5 + d, y) and (x+ 5 + d, y + 1), with a start time of t+ 17 + 3d.

The distance between the incoming vehicle pair and the outgoing vehicle pair is 5+ d, so, if the
incoming pair were to continue on, both pairs would be in the same position at t + 5 + d. Since
the outgoing pair starts at time t+ 17 + 3d, the mechanism induces a delay in the transmission of
the incoming pair of 12 + 2d. By adding the delay mechanism to all copies made from the variable
stream, we can adjust the relative timing of each vehicle pair by adjusting the value of d in each
delay mechanism.
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li

l′i

(x, y) d

Figure 6: A diagram tracing the path a single pair of truth values (z′i, zi) take through the delay
mechanism. The dotted vertical line represents where the mechanism can be expanded, separating
the vehicles on either side by a distance of d and thus increasing the induced delay.

3.3 Clause Satisfaction

Clause satisfaction is verified with a mechanism that forces two particular vehicles to collide if all
of the literals are False. The mechanism consists of two parts: one for the positive literals and
one for the negative literals. Each part contains vehicle pairs representing the literals and their
negations, blocking vehicles to appropriately constrain movement, and a verifying vehicle. If the
set of literals do not satisfy the clause, each verifying vehicle is constrained to a single speed profile
and they will collide. First, we look at the half that verifies the negative literals.

Define a point r = (x, y) to be a reference point from which all other positions will be defined
at a reference time t (see Fig. 7). Next, assume three pairs of incoming vehicles (l′1, l1), (l

′
2, l2),

and (l′3, l3), each a copy of the appropriate variables. These pairs travel horizontally, 1 unit apart
vertically, with their leading edges 4 units behind the previous pair. Thus, the leading edges of the
pairs are (x, y) and (x, y+1), (x− 4, y+2) and (x− 4, y+3), and (x− 8, y+4) and (x− 8, y+5).

Next, place two blocking vehicles at (x− 2.5, y+1.5) and (x− 6.5, y+3.5). These vehicles have
a start time of t, travel horizontally to the right, and have their deadlines set so that they must
travel at δmax with no delays. Finally, place a verifying vehicle v at (x, y) with a start time of t
and traveling downward. The deadline for the verifying vehicle is set so that it can delay up to 5
time units.

Lemma 3.2. Given the vehicle pairs, blocking vehicles, and verifying vehicle defined above, the
verifier must delay for 5 time units if all of the literals are False but may delay for less if at least
one is True.

Proof : First, notice that every horizontal vehicle in the mechanism is on a possible collision course
with the verifying vehicle. Thus, if the slope of the line between one of these vehicles and the
verifying vehicle has a magnitude of 1 (or if their positions are equal), the vehicle will collide with
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the verifying vehicle v if both continue without delay.

(a) (b)

(x, y)

Blockers

l1

l′1

l2

l′2

l3

l′3

Figure 7: (a) The initialization of the negative half of a clause verifier for the clause (¬z1∨¬z2∨¬z3)
and with each variable zi = True. (b) The verifier with z2 = False and z1 = z3 = True.

If each variable zi is True then its negative copy l′i is False, taking a delay-last movement
policy. This places l′1 at (x, y) and l1 at (x − 1, y − 1) at time t, which would lead to a collision
with v. While l′1 could still delay for 1 unit, l1 no longer has this freedom as it has adopted the
delay-first policy. Thus, to avoid a collision, v must delay for at least 1.

At time t+ 1, the first blocking vehicle has moved to (x− 1.5, y + 1.5). The blocking vehicles’
deadlines allow for no delay, so again v must delay.

At time t + 2, l′2 has moved to (x − 2, y + 2) and l2 has moved to (x − 3, y + 3). Just as with
l1, v is forced to delay to avoid a collision.

At time t+ 3, the second blocking vehicle is at (x− 3.5, y + 3.5), forcing another delay of v.
Finally, at time t+ 4, l′3 has moved to (x− 4, y + 4) and l3 has moved to (x− 5, y + 5), forcing

one last delay of v.
Thus, if all of the variables zi are True, making the negative literals l′i all False, the verifying

vehicle v must delay for 5 units of time in order to avoid a collision.
If any of the variables are False, their resultant copies l′i and li will have shifted horizontal

positions, no longer lying on the line of collision with v (i.e., their slopes are no longer magnitude
1), allowing v to delay for less than 5 units and slip between them. ⊓⊔

The positive half of the mechanism works in the same manner, with slight changes to the
incoming literal vehicles and some added vehicles to account for these changes. First, the incoming
literal pairs are not staggered with respect to each other but instead arrive with colinear leading
edges and 1 unit apart (see Fig. 8(a)). Next, a copy of each literal pair is made, traveling downward.
The first copy pair is placed at (x+5, y) and (x+6, y) and has a start time of t+5. The next pair
is placed at (x+ 3, y + 2) and (x+ 4, y + 2) with a start time of t+ 3. The third pair is placed at
(x+ 1, y + 4) and (x+ 2, y + 4) and has a start time of t+ 1.
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Next, two blocking vehicles, traveling downward, are added at (x+2.5, y+9.5) and (x+4.5, y+
5.5), both with a start time of t+ 9.

Finally, a verifying vehicle traveling to the right is added at (x+1, y+12), with a start time of
t+ 9 and deadline allowing for a delay of up to 5 time units. As before, the vehicle will be forced
to delay for 5 time units if the clause is not satisfied by any of the positive literals.

(a) (b)

l1

l′1

l2

l′2

l3

l′3

(x, y)

Figure 8: (a) The initialization of the positive half of a clause verifier for the clause (z1 ∨ z2 ∨ z3)
and with each variable zi = False. (b) The verifier with z2 = True and z1 = z3 = False at time
t+ 9.

A clause will never have more than three literals, so it will never be the case that both the
positive and negative halves of the clause verifier will have three literals. Blocking vehicles are
added to take the place of missing literals in each half and their deadlines are set so that no delay is
allowed. In this way, the verifying vehicles are still forced to delay for 5 units when their associated
set of literals do not satisfy the clause.

The positive and negative halves of the mechanism are placed so that the paths of the verifying
vehicles intersect. However, the time at which each half processes its literals may differ, dependent
on which variables are being evaluated and the distance their values must travel to reach the
mechanism. This can be compensated for in the delay mechanisms so that the verifying vehicles
will collide with one another if both delay for 5 time units. In this way, if a clause is not satisfiable,
a collision is inevitable, rendering the traffic crossing unsolvable. If the clause is satisfiable, one or
both of the verifying vehicles will have at least two movement options, allowing them to avoid a
collision.

3.4 Complete System Example

In the complete system, all of the variables are stacked on top of each other to form a variable
stream. The appropriate literals are extracted, passed through a delay mechanism, and routed to
their clause verifier halves. These mechanisms output a vehicle that will have delayed for 5 time
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units if the variable assignments do not satisfy their respective clauses. The verifier vehicles from
each clause will collide if neither set of literals satisfies them. An example of a 3-SAT reduction for
the formula (¬z1 ∨ z2 ∨ ¬z3) can be seen in Fig. 9.

3.5 Analysis of Translation Complexity

Every variable in the formula F requires 6n vehicles: one for the variable, one for its negation,
and the two helper pairs. Next, when considering each of the m clauses, the greatest number of
vehicles is necessary when all of the literals are positive. 15 are needed for the positive verifier, 9
for the negative verifier, 14 for each of the two delay mechanisms, and 12 for routing, for a total of
at most 64 vehicles per clause. The complexity of translation is then 6n+ 64m and is therefore on
the order of O(n+m).

4 A Solution to the One-Sided Problem

While the generalized Traffic Crossing Problem may be NP-Hard, it is possible to solve a constrained
version of the problem much more efficiently. The complexity of the generalized Traffic Crossing
Problem comes from the interplay between the two sets of vehicles. This interplay results in a
complex cascade of constraints. To break this interdependency, one set of vehicles will have their
speeds fixed as they travel through the intersection. In this version of the problem, referred to as
the one-sided problem, this interplay is eliminated, and hence the horizontal vehicles can plan their
motion based on full information of the constraints imposed by the vertical vehicles. For the sake
of clarity, some other assumptions are made that simplify the formulation in a natural way while
still displaying the salient issues.

First, we assume that the vertically traveling vehicles are invariant and are all traveling at the
same speed, sn. Given this invariance, the cascade of constraints leading to the original problem’s
NP-Hardness has been eliminated as the movements of the horizontal vehicles have become decou-
pled from each other (formerly being transmitted through the vertically traveling vehicles). This
loss of dependence allows us to simplify the formulation of the problem, without loss of generality,
by assuming all vehicles will approach the intersection either from the north or from the west.
Finally, we assume that all vehicles are of length l and in general position.

Formally, vehicles from the north are in the subset N ⊂ V and their direction of travel is
dn = (0,−1), where as vehicles from the west are in the subset W ⊂ V with a direction of travel of
dw = (1, 0). Thus, our only task is to find valid speed profiles for vehicles coming from the west.

To begin, the problem space is transformed so that the controllable vehicles (i.e., the vehicles
in W ) are represented as points rather than line segments. This makes movement planning simpler
while maintaining the geometric properties of the original space. Every vehicle in W is contracted
from left to right, until it is reduced to its leading point. In response, the vehicles in N must be
expanded, transforming each of them into a square obstacle with sides of length l (see Fig. 10) and
with their left edges coincident with their original line segments.

Given the global speed limit δmax, there are regions in front of each obstacle that, if a vehicle in
W enters them, there is no possibility of escape before a collision occurs (this concept is similar to
the obstacle avoidance work done in [12]). These triangular zones (referred to as collision zones)
are based on the speed constraints of the vehicles and are formed by a downward extension of the
leading edge of each obstacle. The leftmost point of this edge is extended vertically downward and
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Figure 9: An example of a 3-SAT problem with F = (¬z1∨z2∨¬z3), expressed as a traffic crossing.
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(a) (b)

Figure 10: (a) A random traffic crossing problem as viewed from a single active vehicle. (b) The
resulting space after the point transformation of the active vehicle problem in (a).

the rightmost point is extended downward and to the left at a slope derived from the ratio between
δmax and the obstacle speed. As one last concession to clarity, we scale the axes of our problem
space so that this ratio becomes 1. Formally, a collision zone ZO for the obstacle O is the set of
all points p, such that there is no path originating at p with a piecewise slope in the interval [1,∞]
that does not intersect O.

Figure 11: An example of merging obstacles.
Here, the collision zones for each individual ob-
stacle (represented as shaded triangles) are insuf-
ficient as the merger creates a larger area that
vehicles must avoid (seen here as the unfilled tri-
angle).

When expanding the vehicles in N it is pos-
sible that the new rectangular obstacles may
overlap one another, producing larger obstacles
and, consequently, larger collision zones (see
Fig. 11). These collision zones follow similar
rules as those above, though the meaning of
terms such as “leading edge,” “leftmost,” and
“rightmost” are altered and, instead of apply-
ing locally, are now viewed across the entire
set of contiguous obstacles. This merger and
generation of collision zones is done through
a standard sweep line algorithm and occurs in
O(n logn) steps, where n is the number of ob-
stacles, as described below.

4.1 Merging Obstacles and Growing

Collision Zones

The processing of obstacle mergers and the gen-
eration of collision zones will be done using a
horizontal sweep line moving from top to bot-
tom. While the following is a relatively standard application of a sweep line algorithm, it is included
for the sake of completeness. First, the horizontal edges of every obstacle are stored, in order from
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top to bottom, into an event list for the sweep line. Given O(n) obstacles, this occurs in O(n logn)
time as they are sorted. The sweep line status stores a set of intervals representing the interiors
of disallowed regions (e.g., the inside of an obstacle or collision zone). Each interval holds three
pieces of information: the location of its left edge, a sorted list of the right edges of any obstacles
within the interval, and the slopes of these right edges. Most of these slopes will be infinite (i.e.,
the edges are vertical) except for the rightmost edge of the collision zone that, at times, will have
a slope of 1.

The event list must keep track of four different events, two of which are known a priori and
two of which is generated during the sweep. The positions of the top and bottom edges of the
obstacles are all know before hand and are added to the list at the start. The remaining event deals
with the sloped edges of the collision zones. These edges begin at the bottom edge of an obstacle
and terminate in one of three ways: against the top of another obstacle, against the right edge of
another obstacle, or by reaching the left edge of an interval. The first case is already in the event
list as the top edges were added at the start of this process. The remaining two cases will be added
as the sweep line progresses through the obstacles.

Thus, the sweep line must handle the following events:

Top Edge Encounter - When the sweep line encounters the top edge of an obstacle it must
either create a new interval or add this obstacle to an existing interval. The creation of a new
interval is straightforward as the endpoints of the edge are all that need to be added (see Fig.
12(a)).

If the top edge intersects an existing interval, however, there is a little more work to be done.
First, if the leftmost point of the edge does not lie within the interval then it becomes the
new leftmost edge of the interval (see Fig. 12(b)). If the sloped edge of a collision zone has
already formed for this contiguous block of obstacles (see Bottom Edge Encounter for a
description of how these form), then the termination point of the sloped edge may need to be
updated to account for a shift in the leftmost edge.

Second, the rightmost point of the encountered edge is inserted into the list of right edges
in left-right order. The new edge may become the new rightmost edge and if the previous
rightmost edge was sloped then it is removed from the edge list. For example, in Fig. 12(d)
this has just occurred within the set of obstacles on the left. If the newly added right edge
does not replace the sloped edge and the sloped edge intersects the newly added edge, the
point at which they intersect is added to the list of events to be processed (this occurs in Fig.
12(c) on the right side). If there is an existing event in the event list for the sloped edges
intersection with another obstacle, it must be deleted as the addition of the newest obstacle
will truncate the edge before it reaches that event.

Bottom Edge Encounter - When the bottom edge of an obstacle is encountered, the obstacle’s
right edge is found in the interval’s edge list. If it is not the rightmost, it is removed from
the edge list (this occurs in Fig. 12(e) on the left, denoted by the grey slope arrow). If the
edge to be removed is the rightmost edge in the list, rather than removing it, its slope is
changed to that of the ratio between the vehicles’ speed limit and the speed of the vehicles,
δmax

sn
. Next, the termination point for this sloped edge is added to the event list. This is

the point at which the leftmost edge of the interval and the sloped edge meet. This point is
illustrated in Fig. 12(e), though it was added when the previous bottom edge was processed.

16



As noted above, this event may need to be updated if a top edge is encountered that moves
the leftmost edge of this interval.

Sloped Edge Termination - When the sloped edge terminates against a right edge in the edge
list, it is deleted from the edge list. This makes the edge with which it collided the new
rightmost edge.

Interval Termination - In this case, the sloped edge of the collision zone has met the leftmost
edge of the interval. When this is the case, the interval has finally closed and can be removed
from the sweep line status (see Fig. 12(f)).

(c) (d)

(e) (f)

(a) (b)

Figure 12: A sweep line merging obstacles and creating collision zones. Note: these illustrations
do not show every step in the sweep line process. Some are skipped in order to save space. (a)
Encountering the first top edge and adding an interval to the sweep line status. (b) Encountering
the next top edge, which increases the interval size. (c) Encountering bottom edges changes the
rightmost slope of the collision zone. Notice on the right that an internal right edge is stored in the
status. (d) Sloped edges the top of an unprocessed obstacle and the rightmost edge of an obstacle
in an interval. (e) Encountering the bottom edge of an internal obstacle. It’s rightmost edge is
deleted from the sweep line status. (f) Reaching the point of convergence for a collision zone. The
interval is deleted from the sweep line status.
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The initial population of the event list occurs in O(n logn) time as it requires the sorting of the
top and bottom edges of the obstacles. As the sweep line progresses through the obstacle space, it
must add and remove the right edges of obstacles to the appropriate intervals. These lists of right
edges are built incrementally in sorted order, so adding to and removing from them requires only
O(logn) time. Finally, as there are a constant number of possible events per obstacle (at most,
each obstacle has a single top edge, a single bottom edge, and a single termination of its sloped
edge), there are at most O(n) events to be processed. Thus, the sweep line processes the obstacle
space in O(n logn) time.

4.2 Movement Planning

Once the obstacles have been merged and grown appropriately, we need to find speed profiles for
each vehicle that allow them to safely cross the intersection. This is done using the same obstacle
filled space we have been working with thus far, though with a small change in perspective. Cur-
rently, vehicles are only allowed horizontal movement and obstacles only move vertically. Instead,
we will treat the obstacles as static objects and add a vertical component to the vehicles equal to
the obstacles’ speed. So, for example, a vehicle moving at the maximum speed will actual follow
a path with a slope of sn

δmax
where as a stationary vehicle will travel vertically. Again, though, we

have scaled our axes so that this ratio is 1, imposing on the vehicle monotonic movement with a
slope in the interval [1,∞]. With this understanding, we can now easily find a path through the
obstacles while obeying the speed constraints of the vehicles.

The vehicle will travel at its minimum slope (equivalent to its maximum speed) until it either
reaches its goal position or encounters an obstacle. If the vehicle would collide with an obstacle, it
comes to a stop and waits for the obstacle to pass before proceeding. Once this occurs, the vehicle
continues on its way at its maximum speed until it has covered the distance to its goal (measured
horizontally, as vertical movement no longer represents spatial translation).

The path created by the above behavior can be efficiently found through the use of another
line sweep. First, notice that every edge that is locally to the left of an obstacle (referred to as
a left edge) is a vertical line segment. Since the vehicles move monotonically, they will only ever
encounter an obstacle at one of these left edges. So, to find a path for each vehicle traveling at
speed δmax, a sweep line perpendicular to the vehicles’ trajectories is created and swept from the
upper-right to the lower-left (see Fig. 13(a)). This perpendicular line’s status will maintain a list
of obstacle occlusions with respect to the vehicles’ direction of travel by adding an interval for each
obstacle as it is encountered during the sweep. More specifically, it stores the point where the
sweep line first encountered the obstacle’s left edge, the horizontal position of the left edge, and
the point where the sweep line last encountered the edge.

During the sweep, a tree is built representing a set of all paths through the obstacle field that
encounter an obstacle. Vehicles will either encounter an obstacle in the tree or are free to travel
at full speed without collision until their goal is reached. Each obstacle is a vertex in the tree and
edges represent the path taken after encountering this obstacle. The edge will either lead to an
encounter with another obstacle or will lead to the root. The root is the only vertex which does
not represent an obstacle but instead signifies an open path to the goal.

The event list for the sweep line is populated with the upper and lower ends of each left edge.
Whenever an upper end is encountered, it is inserted into the list of intervals in the sweep line
status and the obstacle is inserted into the path tree. If the insertion point does not lie within an
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Figure 13: (a) A sweep line for path finding, traveling perpendicular to the direction of travel of
a vehicle moving at speed δmax. (b) The sweep line encountering vertical edge 1. As there is no
interval on the sweep line where it occurs, this line’s path goes directly to the goal at speed δmax.
Edges to the root of the path tree are represented by arrows going off to infinity. (c) The sweep
line encountering edge 3. This encounter lies in the interval for edge 1. (d) Encountering edge 5,
creating a path from it to edge 4. (e) Encountering the first vehicle, which lies in the interval for
edge 3. Thus, the final path for the vehicle is to travel at maximum speed until it reaches edge 3,
wait for the edge to pass, travel to 1, wait, and finally travel to the goal position. (f) The sweep
line encountering the second vehicle at an open interval. Thus, this vehicle can travel at speed δmax

until it reaches its goal position.
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existing interval, then an edge between the obstacle and the root is created (see Fig. 13(b)). If
the insertion point lies within an interval, that interval is split by the inserted point and an edge
between the new obstacle and the interval’s obstacle is added (see Fig. 13(c)).

Whenever the lower end point of an obstacle’s left edge is encountered, the interval ending for
that obstacle is added to the list. If an event occurs before an interval has completed, the intervals
intermediate size can be determined using the position of the sweep line, the start point of the
interval, and the position of the obstacle’s left edge (This occurs in Fig 13 between (c) and (d)).
Finally, when a vehicle is encountered, its position along the sweep line determines its path. If
it is an interval, then its path begins by traveling to the associated obstacle and, using the path
tree, travels to that obstacle’s parent obstacle, repeating this process until it has reached its goal
position.

So, in the example in Fig 13(e), the upper vehicle encounters obstacle 3, waits for it to pass (i.e.,
travels vertically till the end is reached), moves at the maximum speed until it encounters obstacle
1, then continues on until it reaches its goal position. The lower vehicle, having been inserted into
the interval list in between intervals, is free to travel at the maximum speed until its goal position
is reached (see Fig. 13(f)).

4.3 Different Length Vehicles

While we have made the assumption that all vehicles must be of the same length, this solution
proposed above can easily tolerate differing lengths in the invariant vehicles in N . In fact, no
change is required at all. Neither the sweep line nor the movement planning policy have any
dependencies on the vertical length of the obstacles. However, the problem becomes harder when
the vehicles in W have differing lengths. This is due to the fact that the contraction/expansion of
the problem space can not be shared among all of the vehicles. The naive solution is to simply rerun
this step for every vehicle in W , leading to disappointing complexity on the order of O(n2 log n). Of
course, in reality having n cars does not imply n different lengths. Instead, cars could be bucketed
according to their length as there are likely only a handful of meaningful lengths that need to be
considered. Given this, the sweep line process would only need to occur a constant number of times
(equal to the number of buckets) with no impact on the asymptotic complexity.
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A Remarks

Remark Since vehicle dynamics and timing differences are difficult to understand in static images,
some visualization conventions are used throughout this paper to convey these time dependent
properties. First, delays in a vehicle’s movement are visualized by displacing the vehicle by a
distance equivalent to the delay. For example, a vehicle placed 1 distance unit behind its starting
position represents a delay of 1 time unit (see Fig. 14(a)). This positional change is equivalent to
a 1 unit delay as it takes the vehicle this long to reach its original position when traveling at the
maximum speed (which the vehicles must do in order to reach their goals in time). Additionally, we
can visualize a vehicle’s path in relation to another vehicle traveling perpendicularly by projecting
one of the vehicles along the resultant vector of their combined motions (thus the shaded region in
Fig. 14(b)). The deflection of this band is based on the ratio of the two vehicles’ speeds. If this
shaded band intersects both vehicles then a collision will occur between them.

(a) (b)
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Figure 14: (a) A pair of vehicles traveling toward each other. Both v1 and v2 have an allowable
delay of 1 time unit, though only v2 has actually done so. (b) The motion of v1 projected forward
in time. Notice that a collision will occur with v2, which would have been avoided if v2 had not
delayed.
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